Heparan sulfate proteoglycan-dependent induction of axon branching and axon misrouting by the Kallmann syndrome gene kal-1.

نویسندگان

  • Hannes E Bülow
  • Katherine L Berry
  • Liat H Topper
  • Elior Peles
  • Oliver Hobert
چکیده

Kallmann syndrome is a neurological disorder characterized by various behavioral and neuroanatomical defects. The X-linked form of this disease is caused by mutations in the KAL-1 gene, which codes for a secreted molecule that is expressed in restricted regions of the brain. Its molecular mechanism of action has thus far remained largely elusive. We show here that expression of the Caenorhabditis elegans homolog of KAL-1 in selected sensory and interneuron classes causes a highly penetrant, dosage-dependent, and cell autonomous axon-branching phenotype. In a different cellular context, heterologous C. elegans kal-1 expression causes a highly penetrant axon-misrouting phenotype. The axon-branching and -misrouting activities require different domains of the KAL-1 protein. In a genetic modifier screen we isolated several loci that either suppress or enhance the kal-1-induced axonal defects, one of which codes for an enzyme that modifies specific residues in heparan sulfate proteoglycans, namely heparan-6O-sulfotransferase. We hypothesize that KAL-1 binds by means of a heparan sulfate proteoglycan to its cognate receptor or other extracellular cues to induce axonal branching and axon misrouting.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C. elegans Kallmann syndrome protein KAL-1 interacts with syndecan and glypican to regulate neuronal cell migrations.

The anosmin-1 protein family regulates cell migration, axon guidance, and branching, by mechanisms that are not well understood. We show that the C. elegans anosmin-1 ortholog KAL-1 promotes migrations of ventral neuroblasts prior to epidermal enclosure. KAL-1 does not modulate FGF signaling in neuroblast migration and acts in parallel to other neuroblast migration pathways. Defects in heparan ...

متن کامل

Complex Cooperative Functions of Heparan Sulfate Proteoglycans Shape Nervous System Development in Caenorhabditis elegans

The development of the nervous system is a complex process requiring the integration of numerous molecular cues to form functional circuits. Many cues are regulated by heparan sulfates, a class of linear glycosaminoglycan polysaccharides. These sugars contain distinct modification patterns that regulate protein-protein interactions. Misexpressing the homolog of KAL-1/anosmin-1, a neural cell ad...

متن کامل

Distinct 3-O-Sulfated Heparan Sulfate Modification Patterns Are Required for kal-1−Dependent Neurite Branching in a Context-Dependent Manner in Caenorhabditis elegans

Heparan sulfate (HS) is an unbranched glycosaminoglycan exhibiting substantial molecular diversity due to multiple, nonuniformly introduced modifications, including sulfations, epimerization, and acetylation. HS modifications serve specific and instructive roles in neuronal development, leading to the hypothesis of a HS code that regulates nervous system patterning. Although the in vivo roles o...

متن کامل

Initial characterization of anosmin-1, a putative extracellular matrix protein synthesized by definite neuronal cell populations in the central nervous system.

The KAL gene is responsible for the X-chromosome linked form of Kallmann's syndrome in humans. Upon transfection of CHO cells with a human KAL cDNA, the corresponding encoded protein, KALc, was produced. This protein is N-glycosylated, secreted in the cell culture medium, and is localized at the cell surface. Several lines of evidence indicate that heparan-sulfate chains of proteoglycan(s) are ...

متن کامل

The Caenorhabditis elegans Ephrin EFN-4 Functions Non-cell Autonomously with Heparan Sulfate Proteoglycans to Promote Axon Outgrowth and Branching.

The Eph receptors and their cognate ephrin ligands play key roles in many aspects of nervous system development. These interactions typically occur within an individual tissue type, serving either to guide axons to their terminal targets or to define boundaries between the rhombomeres of the hindbrain. We have identified a novel role for the Caenorhabditis elegans ephrin EFN-4 in promoting prim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 99 9  شماره 

صفحات  -

تاریخ انتشار 2002